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Abstract

The Rprop algorithm proposed by Riedmiller and
Braun is one of the best performing first-order
learning methods for neural networks. We intro-
duce modifications of the algorithm that improve
its learning speed. The resulting speedup is experi-
mentally shown for a set of neural network learning
tasks as well as for artificial error surfaces.
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1 Introduction

Gradient descent techniques are the most widely
used class of algorithms for supervised learning in
neural networks. Adaptive gradient based algo-
rithms with individual step-sizes try to overcome the
inherent difficulty of the choice of the right learning
rates. This is done by controlling the weight up-
date for every single connection during the learn-
ing process in order to minimize oscillations and
to maximize the update step-size. The best of
these techniques known to the authors in terms of
convergence speed, accuracy and robustness with
respect to its parameters is the Rprop (resilient
backpropagation) algorithm. The reader is referred
to [6, 12, 13, 15] for comparisons of Rprop with other
supervised learning techniques and to the review of
learning methods in [11]. We would like to stress
that the algorithm is a general method for gradient
based optimization; in particular, it does not rely
on special properties of a certain class of network
topologies. Further, its memory requirements scale
only linearly with the number of free parameters to
optimize.

A common and quite general method for improving
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network training is weight-backtracking. Weight-
backtracking means retracting a previous weight up-
date for some or all weights, cf. [19, 17, 18, 13].
Whether to take back a step or not is decided by
means of a heuristic. Rprop has been proposed in
literature with and without backtracking. In this
paper, we suggest modifications of both versions and
experimentally compare the two new methods and
the original Rprop algorithms. We make use of ar-
tificial test functions and a set of learning problems
for feed-forward neural networks.

In the next section, we describe the Rprop algorithm
as proposed by Riedmiller and Braun [13, 12]. In
Sec. 3, we introduce our modifications and in Sec. 4,
we show the improved learning speed by means of
different learning tasks. The article ends with a con-
clusion.

2 The Rprop Algorithm

Let w;; denote the weight in a neural network from
neuron j to neuron ¢ and E be an arbitrary er-
ror measure that is differentiable with respect to
the weights. Bias parameters are regarded as being
weights from an extra input; superscripts indicate
the learning epoch (iteration).

In the Rprop learning algorithm the direction of
each weight update is based on the sign of the par-
tial derivative OE/Ow;j. A step-size, i.e. the update
amount of a weight, is adapted for each weight indi-
vidually. The main difference to other techniques is
that the step-sizes are independent of the absolute
value of the partial derivative. The benefits of this
update scheme are described in [13, 12].

One iteration of the original Rprop algorithm can be
divided into two parts. The first part, the adjust-
ment of the step-sizes, is basically the same for all
algorithms employed in this study. For each weight
w;; an individual step-size A;; is adjusted using the



following rule:
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where 0 < 7~ < 1 < nT. If the partial deriva-
tive OF/Ow;; possesses the same sign for consecu-
tive steps, the step-size is increased, whereas if it
changes sign, the step-size is decreased (the same
principle is also used in other learning methods, e.g.
[5, 18]). The step-sizes are bounded by the param-
eters Apin and Apax. In the following, we describe
the second part of the algorithm, the update of the
weights, for the different Rprop versions.

2.1 Rprop with Weight-Backtracking

After adjusting the step-sizes, the weight updates
Aw;; are determined. Two cases are distinguished.
If the sign of the partial derivative has not changed,
a regular weight update is executed:
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where the sign operator returns +1 if its argument
is positive, —1 if the argument is negative, and 0
otherwise. In case of a change of sign of the partial
derivative, the previous weight update is reverted:

9E =1  gp ®
8wij . 811)1']‘

if < 0 then

(t)
OB ™ 0. @)

Awg) = —Awg Y and P,
Setting the stored derivative to zero avoids an up-
date of the learning rate in the next iteration, be-
cause the else branch in (1) becomes active. This
can be regarded as an implementation trick; the
same effect could be reached by adding a flag to
the algorithm. A similar rule for partial weight-
backtracking can be found in [18]. Finally, the new
weights are given by

(t+1)
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We refer to this original algorithm as Rprop™
throughout this article, where the superscript indi-
cates the use of weight-backtracking. Algorithm 1
describes Rprop™ in pseudo-code.

for each w;; do
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elseif aaTEij(til) . aaTEij(t) =0 then
Awgi) = —sign (%(t)) . AZ(;)
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w;; = wyy +Awij
fi
od

Algorithm 1: The Rprop™ algorithm with weight-
backtracking as introduced in [13].

2.2 Rprop without
Weight-Backtracking

In [1, 12] a different version of the Rprop algorithm
is described. The weight-backtracking is omitted
and the right hand side of (2) is used in all cases.
Hence, there is no need to store the previous weight
updates. We denote this version as Rprop~. Algo-
rithm 2 shows the corresponding pseudo-code.

for each w;; do

if 202 (71 o8 () 5 g then

Bwij Bwij

Al(;) := min (Al(;fl) T, Amax)

elseif 22 (7Y or < 0 then

dws; dws;
Al(;) ‘= max (Al(;fl) -n, Amin)
fi
wgﬂ) = wl(;) — sign (a%i(t)) . AE;)
od

Algorithm 2: The Rprop™ algorithm without weight-
backtracking scheme as introduced in [12].



3 Modifications

3.1 A New Weight-Backtracking
Scheme

Our first modification of Rprop is based on the con-
sideration that a change of sign of the partial deriva-
tive implies that the algorithm has jumped over a
local minimum, but does not indicate whether the
weight update has caused an increase or decrease of
the error. Thus, the decision made in (3) to undo
such a step is somewhat arbitrary. Even worse, it
appears to be counterproductive to take back a step
though the overall error has decreased. The idea
of the modification of Rprop™ is to make the step
reversal dependent on the evolution of the error.

Suppose that the network is close to a (local) op-
timum, so that locally the error surface can be ap-
proximately regarded as quadratic. If the algorithm
does not leave the basin of attraction of the opti-
mum, i.e. the step-sizes are adapted to sufficiently
small values, then each weight update not leading to
a change of sign of the corresponding partial deriva-
tive is always a step taking the weight closer to its
value at the optimum. This fact leads to the rule to
revert only weight updates that have caused changes
of the corresponding partial derivatives in case of an
error increase. Hence, we replace (3) by
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In (5) we combine ‘individual’ information about the
error surface (sign of the partial derivative of the er-
ror function with respect to a weight) with more
‘global’ information (network error) to make the de-
cision whether to revert a step or not for each weight
individually. This combines the strictly ‘global’ ap-
proach, where the complete previous update for all
weights is reversed if E®) > yE(¢=1 (4 = 1.0 [17];
1. < v < 1.05 [19]), with the ideas in [13, 18]. The
adaptation of the step-sizes is still independent of
an error decrease or increase.

Compared to Rprop™ only one additional variable,
the previous error E(*=1) has to be stored. We refer
to this modified algorithm as iRprop™ throughout
the remainder of this paper. Algorithm 3 summa-
rizes iRprop™ in pseudo-code.

for each w;; do

if 22 07D o8 ) o g then
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elseif aaTEij(til) . aaTEij(t) =0 then
Awg;) = —sign (%(t)) . Al(;)
(t+1) ._ (1) (t)
w;; =w; + Awij
fi
od

Algorithm 3: The iRprop™ algorithm with improved
weight-backtracking scheme. The proposed algorithm
differs only in one line from the original Rprop™.

3.2 A New Rprop without
Weight-Backtracking

In case of a change of sign of the derivative, the
iRprop™ algorithm described in the previous sec-
tion does two things in addition to the reduction of
the step-size: First, it performs weight-backtracking
in the (few) cases where the overall error increased.
Second, it always sets the derivative %(t)
In order to analyze the effects of these two differ-
ent actions, we came up with Algorithm 4, which is
the same as iRprop* without weight-backtracking.
We denote this algorithm as iRprop™—. The only dif-
ference between Rprop™ and iRprop~ is that the

derivative is set to zero.

to zero.

If the sign of a partial derivative changes, iRprop™
reduces the corresponding step-size and does not
modify the corresponding weight. Additionally, it is
ensured that in the next step the weight is modified
using the reduced step-size, but the actual gradient
direction.



for each w;; do

if 22 D o8 () o g ¢hen

Bwij Bwij

AR = min (A5, Ao )

elseif %(t_l) o8 () < 0 then

Owij
AE;-) = max (AE;—_D “n, Amin)
a()T)i(t) —0
fi

w,

G =) —sien (F57) A

od

Algorithm 4: The iRprop~ algorithm without weight-
backtracking. The proposed algorithm differs only in
one line from Rprop™.

4 Experimental Evaluation

In order to compare the four algorithms, we use arti-
ficial test functions with known properies. Addition-
ally, we compare the performance of the algorithms
on feed-forward neural network learning problems.

In all the experiments, we use the same parameters
for all four algorithms, n* = 1.2, = = 0.5, Ag =
0.0125 (the initial value of the A;;), Amin = 0 and
Amax = 50, see [13, 10, 12].

All presented results are averaged over 1000 inde-
pendent trials for each problem, where the four
learning algorithms started from the same (weight)
initializations.

4.1 Artificial Test Functions

In the vicinity of an optimum, the error surface can
be approximated by a hyperparaboloid, i.e. the con-
tours of constant error are elliptical. Let w denote
the n-dimensional vector of parameters to optimize,
e.g. n weights of a neural network. Then the hyper-
parabolic error surface is given by

where (.,.) denotes the scalar (dot) product. The
vectors 01,...,0, € R" form a normalized orthog-
onal basis with random orientation, i.e. for each
1 < 4,5 < nit holds (0;,0;) = 0if i # j and

[loi]| = 1. This test function is a generalization of
the artificial error surface proposed in [16]. It is used
in [3, 2] for analyzing the local search properties of
evolutionary algorithms.

Rprop is not invariant against rotation of the co-
ordinate system; its performance strongly depends
on the choice of o1,...,0, (not rotating the coor-
dinate system results in a not realistic special case,
where the weights in the neural network influence
the error independent of each other). In our exper-
iments, we use a different basis in each trial. The
Gram-Schmidt orthogonalization procedure is used
to construct o1, ..., 0, from randomly drawn basis
vectors.

The parameter a corresponds to the relation be-
tween longest and shortest axis of the elliptical con-
tours; it is equal to the square root of the condi-
tioning of the problem defined as the ratio between
largest and smallest eigenvalue of the Hessian of Eq.
(6). According to [2], a choice of a = 10? is reason-
able for real world optimization problems. An idea
about the magnitude of a for neural networks comes
from the analysis of the Hessian matrix. It is argued
that a typical Hessian has few small, many medium
and few very large eigenvalues [8]. This leads to a
ratio between longest and shortest axis much larger
than 103.

As the Rprop algorithms (except iRprop™) depend
only on the sign of the derivative, results obtained
with test functions generated by Eq. (6) do not only
hold for parabolic error surfaces, but for a larger
class of basins of attraction.
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Figure 1: Averaged error curves for Fio, the iRprop™
and iRprop™ trajectories coincide. The modified algo-
rithms perform significantly better (Wilcoxon rank sum
test in the last epoch, p < .001).



We found the performance of the four algorithms to
be dependent on the conditioning of the test func-
tions. However, only for very small and unrealistic
values of a (a < 3) the original methods converge
faster than the modified algorithms. The larger
a the more outperform iRprop~ and iRprop™ the
original algorithms. Figure 1 shows the results for
a = 10 and a problem dimension of 100 as an ex-
ample. We can conclude that the proposed modifi-
cations improve the local optimization properties of
the Rprop algorithms for all relevant scenarios.

4.2 Neural Network Benchmark
Problems

The first two test problems are classification tasks
taken from the PROBEN1 benchmark collection
[10], namely the diabetes! and cancer! training
(test) data sets with 384 (193) and 351 (175) sam-
ples, respectively. We use the same network archi-
tectures as the best networks in [10], see Tab. 1. A
8-2-2-2 topology means 8 inputs, two hidden layers
with two units each and 2 output neurons. The out-
put units were linear and the hidden units sigmoid-
like. The networks had all possible feed-forward con-
nections, including all shortcut connections. The
sum-of-squares error function was employed for net-
work training as in [10], but cross-entropy based er-
ror functions may be more suitable for classification
tasks and work also well in combination with Rprop

[6].

The third problem is the T-C' classification problem
inspired by [14] as described in [1], where the goal is
to distinguish between five pixel T’ and C’ patterns
on a 4 x 4 pixel grid, see also [9]. The complete set
of possible patterns is used for training.

As we are concerned with the approximation of so-
lutions of differential equations (DEs) by neural net-
works (see [4]), we employed the Rprop algorithm for
this task. As an example, we present problem3 and
problem5, both described in [7]. The first one is a
second order ordinary DE, the latter is a two dimen-
sional second order partial DE, both with boundary
conditions. The basic approach, the network struc-
ture (fully connected layers without shortcuts, sig-
moidal hidden units and linear output units) and
the error measure were the same as in [7, 4].

Figures 2 to 6 show the averaged learning trajec-
tories. For the classification tasks taken from the
PROBEN1 benchmark collection, the error percent-

age as defined in [10] is given. Table 1 summarizes
the averaged final training error and the minimum
error reached by each learning method.

o test error
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Figure 2: Averaged error percentage for the diabetes
problem. The iRprop~ and iRprop™ trajectories can
hardly be distinguished.
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Figure 3: Averaged error percentage for the cancer
problem. The iRprop~ and iRprop™ trajectories can
hardly be distinguished. The fact that the training er-
ror is larger than the test error is characteristic for this
test problem.
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Figure 4: Averaged error percentage for the T-C prob-
lem. The iRprop~ and iRprop™ trajectories can hardly
be distinguished.



The new algorithms learned faster in all exper-
iments. iRprop™ utilizing the new backtracking
scheme performs slightly better than iRprop~. The
averaged errors between the new and the origi-
nal learning algorithms in the last epochs differ
significantly (Wilcoxon rank sum test, p < .001).
Also in the early stages of the learning processes
the new methods are superior. The Rprop™ with
the standard weight-backtracking scheme often per-
forms worse than Rprop™ without weight reversals
in our experiments. This explains why the origi-
nal backtracking was removed from the Rprop algo-
rithm by the inventors.

This investigation focuses on improving the process
of minimizing the training error. However, in prac-
tice the learning algorithms have to be used in con-
junction with mechanisms that ensure the network’s
ability to generalize, i.e. to predict the correct out-
puts for input patterns not previously used by the
learning algorithm. Overfitting is neither a problem

1074 T
Rprop™ —-—-—
Rprop7 -
iRpropt -----
iRprop™ ——
—
210 E
—
o
107% & | | | 1 —
0 500 1000 1500 2000 2500 3000

epoch

Figure 5: Averaged learning curves for DE solving
(problems3).

error

107 E

0 500 1000 1500 2000 2500 3000
epoch

Figure 6: Averaged learning curves for problem5. The
Rprop~ and Rprop™ trajectories can hardly be distin-
guished.

in case of the T-C task, where the complete data
set is presented, nor in the case of the DE examples,
where overfitting is not observed. For the two other
problems, we have additionally calculated the error
on a test set not involved in network training. The
results in Figs. 2 and 3 show that the modified algo-
rithms do not converge to (local) optima with worse
generalization properties than the other methods.
However, the good generalizing networks are found
faster due to the increased learning speed.

5 Conclusion

The Rprop algorithm is one of the best performing
first-order learning algorithms for neural networks
with arbitrary topology. As experimentally shown,
its learning speed can be significantly improved by
small modifications without increasing the complex-
ity of the algorithm. The new methods perform bet-
ter than the original algorithms on all the neural
network test problems. For the relevant parame-
terizations, the new algorithms also converge faster
on artificial hyperparabolic test functions. The
iRprop~ algorithm appears to be slightly worse than
iRprop™, but it is very compact and needs less mem-
ory.

The three algorithms Rprop™, iRprop~ and
iRprop™ differ only in the used weight-backtracking
scheme. In the context of the basic Rprop algo-
rithm, the original backtracking decreases the learn-
ing speed, whereas the modified backtracking in-
creases the learning speed. Setting the derivative
to zero strongly influences the learning speed of the
Rprop algorithm, as shown by comparison of the
Rprop™ and iRprop™ results. Combined with the
improved weight-backtracking this yields the best
performing algorithm in our investigation, iRprop™.

The experiments in this article are restricted to arti-
ficial test functions and feed-forward multilayer neu-
ral networks. However, we have employed the im-
proved Rprop algorithms for other tasks including
gradient based optimization of recurrent and radial
basis function networks. In all experiments, they
outperformed the original algorithms.

Future work will be directed toward an analysis of
the advantages of the proposed methods applied to
mathematically tractable error surfaces.



Table 1: Errors in the last epoch. For the PROBENI1 tasks the error percentage is given. The differential equation
(problem8 and problemb) results have to be multiplied with 1075 and 1077, respectively.

data set  architecture averaged (best) error in the last epoch
Rprop™ Rprop™ iRprop™ iRprop™
FEno — 5.914-107° 3.925.107° 4.236-107° 4.236-107°
(6.355 -1077) (5.559 -1077) (2.125 -10711) (2.125 -10711)
diabetesl 8-2-2-2 13.64 (12.37) 13.50 (12.18) 13.16 (11.86) 13.16 (11.72)
cancerl 9-4-2-2 2.333 (1.459) 2.242 (1.273) 2.009 (0.958) 2.014 (0.910)
T-C 16-5-1 0.1637 (2.65-1077) 0.1137 (1.32~1077) 0.0701 (0.043-1077) 0.0723 (0.025-1077)
problem3 1-10-1 1.340 (0.0097) 1.251 (0.0100) 0.970 (0.0094) 0.999 (0.0101)
problemd 2-10-1 3.352 (0.247) 3.309 (0.193) 1.717 (0.200) 1.825 (0.194)
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